

Thermally stable novel double perovskite orange-red emitting Sr_2InTaO_6 : Sm^{3+} phosphors with high CRI for WLEDs 一种具有双钙钛矿结构的新型高热稳定性橙红色发光 Sr_2 InTaO₆:Sm³⁺ 荧光粉用于高显色WLED的研究

Changlin Li(李长霖), Zhequan Zou(邹喆泉), Siyu Cheng(程思语), Ruiqi Liu(刘睿琦), Yilian Ran(冉—恋), Ruijin Yu^{*}(余瑞金) College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China

Introduction

(a)

The synthetic raw materials for $Sr_2InTaO_6:Sm^{3+}$ phosphor were weighed SrCO₃, In_2O_3 , Ta_2O_5 , and Sm_2O_3 mixed in a mortar, and ground thoroughly. The mixed compounds were first sintered at 600 °C for 6 h, followed by secondary grinding and sintering at 1300 °C for 6 h, waiting for the temperature to drop to room temperature to obtain the target phosphors.

- > The current research concentrates on pc-WLEDs (phosphor-converted white light-emitting diodes).
- > Nevertheless, the made w-LEDs in traditional way have bad wishes in red that the color rendering index (R_a) is poor and the correlated color temperature (CCT) is high.
- > Three-color WLEDs made by combining green, red, and blue phosphors with ultraviolet (UV) LED chips can solve these problems.
- > Sm³⁺ ions are suitable activators for producing orange-red emissions in various inorganic host.
- > Sr₂InTaO₆ is a compound belonging to the double perovskite class with high color purity, good thermal stability, and broad application.

Phase purity

Experimental

Fig. 1. (a) The XRD patterns of Sr_2InTaO_6 : xSm^{3+} and Sr_2InTaO_6 standard PDF card. (b) Rietveld refinements of the Sr_2InTaO_6 : 5 mol% Sm^{3+} phosphor. Fig. 2. (a–g) EDS spectra of Sr_2InTaO_6 :5 mol% Sm^{3+} and elemental mapping of O, Sr, In, Sm, and Ta.

Fig. 6. Excitation line of $BaSO_4$ based and emission spectrum of Sr_2InTaO_6 :5 mol%Sm³⁺ collected with an integrating sphere. (Inset: magnification of emission spectrum from 550 to 750 nm).

25 mol%). The middle inset shows a picture of the Sr_2InTaO_6 :5 mol% Sm^{3+} phosphor. (b) The standard deviation of the x and y of the $Sr_2InTaO_6:xSm^{3+}$ phosphors (0.5 mol% $\leq x \leq 25$ mol%). (c) Relationship between CIE x, CIE y,

Fig. 10. (a) Coordinate diagram of Sr_2InTaO_6 :5 mol% Sm^{3+} phosphor and the prepared LEDs. (b) Histogram of the CRI of the fabricated WLED compared with that of the commercial WLED.

陕西省金奖

国家级二等奖

and different temperatures (300–480 K) of Sr_2InTaO_6 :5 mol%Sm³⁺.

Conclusions

- 1. We successfully synthesized Sr₂InTaO₆:xSm³⁺ phosphor by a hightemperature. Under n-UV excitation of 407 nm, the $Sr_2InTaO_6:Sm^{3+}$ phosphors emit strong orange-red light at 649 nm.
- 2. The Sr_2InTaO_6 :5 mol% Sm^{3+} phosphor has a good IQE of 67.1%.
- 3. The Sr_2InTaO_6 : Sm^{3+} phosphors have a thermal quenching behavior and excellent thermal stability.
- 4. A WLED with suitable CCT (4853 K) and high R_a (93), and CIE (0.346, 0.349) was prepared. These indicate that $Sr_2InTaO_6:Sm^{3+}$ phosphors can be effectively used in WLEDs.

中科院1区, IF = 5.2

